Photo Of Bat
Bats are flying mammals in the order Chiroptera (pronounced /kaɪˈrɒptərə/). The forelimbs of bats are webbed and developed as wings, making them the only mammals naturally capable of true and sustained flight. By contrast, other mammals said to fly, such as flying squirrels, gliding possums and colugos, glide rather than fly, and only for short distances.
Photo Of Bat
Bats do not flap their entire forelimbs, as birds do, but instead flap their spread out digits, which are very long and covered with a thin membrane or patagium. Chiroptera comes from two Greek words, cheir (χείρ) "hand" and pteron (πτερόν) "wing."
There are about 1,100 bat species worldwide, which represent about twenty percent of all classified mammal species. About seventy percent of bats are insectivores. Most of the rest are frugivores, or fruit eaters. A few species feed from animals other than insects. Bats are present throughout most of the world and perform vital ecological roles such as pollinating flowers and dispersing fruit seeds. Many tropical plants depend entirely on bats for the distribution of their seeds.
Bats range in size from Kitti's Hog-nosed Bat measuring 29–33 mm (1.14–1.30 in) in length and 2 g (0.07 oz) in mass, to the Giant Golden-crowned Flying-fox, which has a wing span of 1.5 m (4 ft 11 in) and weighs approximately 1.2 kg (3 lb).
Photo Morphology Of A Bat
Fossil bats
There are few fossilized remains of bats, as they are terrestrial and light-boned. An Eocene bat, Onychonycteris finneyi, was found in the fifty-two-million-year-old Green River Formation in South Dakota, United States, in 2004 and was added as a new genus and placed in a new family when published in Nature in 2008. It had characteristics indicating that it could fly, yet the well-preserved skeleton showed that the cochlea of the inner ear lacked development needed to support the greater hearing abilities of modern bats. This provided evidence that flight in bats developed well before echolocation. The team that found the remains of this species, named Onychonycteris finneyi, recognized that it lacked ear and throat features present not only in echolocating bats today, but also in other known prehistoric species.
Photo Of Bat
Fossil remains of another Eocene bat, Icaronycteris, were found in 1960.
The appearance and flight movement of bats 52.5 million years ago were different from those of bats today. Onychonycteris had claws on all five of its fingers, whereas modern bats have at most two claws appearing on two digits of each hand. It also had longer hind legs and shorter forearms, similar to climbing mammals that hang under branches such as sloths and gibbons. This palm-sized bat had broad, short wings suggesting that it could not fly as fast or as far as later bat species. Instead of flapping its wings continuously while flying, Onychonycteris likely alternated between flaps and glides while in the air. Such physical characteristics suggest that this bat did not fly as much as modern bats do, rather flying from tree to tree and spending most of its waking day climbing or hanging on the branches of trees.
Photo Of Bat
Reproduction Bad
Most bats have a breeding season, which is in the spring for species living in a temperate climate. Bats may have one to three litters in a season, depending on the species and on environmental conditions such as the availability of food and roost sites. Females generally have one offspring at a time, this is maybe a result of the mother's need to fly to feed while pregnant. Female bats nurse their youngster until it has grown nearly to adult size, this is because a young bat cannot forage on its own until its wings are fully developed.
Female bats use a variety of strategies to control the timing of pregnancy and the birth of young, to make delivery coincide with maximum food ability and other ecological factors. Females of some species have delayed fertilization, in which sperm are stored in the reproductive tract for several months after mating. In many such cases, mating occurs in the fall, and fertilization does not occur until the following spring. Other species exhibit delayed implantation, in which the egg is fertilized after mating, but remains free in the reproductive tract until external conditions become favorable for giving birth and caring for the offspring. In yet another strategy, fertilization and implantation both occur but development of the fetus is delayed until favorable conditions prevail. All of these adaptations result in the pup being born during a time of high local production of fruit or insects.
At birth wings are too small to be used for flight. Young microbats become independent at the age of 6 to 8 weeks, megabats do not until they are four months old.